Quasi-normal modes from non-commutative matrix dynamics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hawking Temperature from Quasi-normal Modes

A perturbed black hole has characteristic frequencies (quasi-normal modes). Here I apply a quantum measurement analysis of the quasinormal mode frequency in the limit of high damping. It turns out that a measurement of this mode necessarily adds noise to it. For a Schwarzschild black hole, this corresponds exactly to the Hawking temperature. The situation for other black holes is briefly discus...

متن کامل

Quasi Normal Modes

In this talk we review different applications of quasinormal modes to black hole physics, string theory and thermalisation in quantum field theory. In particular, we describe the the relation between quasi normal modes of AdS black holes and the time scale for thermalisation in strongly coupled, large N conformal field theory. We also discuss the problem of unitarity within this approach.

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Non - commutative quantum dynamics ∗

We described a q-deformation of a quantum dynamics in one dimension. We prove that there exists only one essential deforamtion of quantum dynamics.

متن کامل

Non-commutative Partial Matrix Convexity

Let p be a polynomial in the non-commuting variables (a, x) = (a1, . . . , aga , x1, . . . , xgx). If p is convex in the variables x, then p has degree two in x and moreover, p has the form p = L + ΛΛ, where L has degree at most one in x and Λ is a (column) vector which is linear in x, so that ΛΛ is a both sum of squares and homogeneous of degree two. Of course the converse is true also. Furthe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2017

ISSN: 1029-8479

DOI: 10.1007/jhep09(2017)048